LightCode

This is a rougly catagorizes selection of papers that informed ideas for much of this work. I tried to cite some of them throught the text, but here they all are together.

Attention is all you need 1 Transformers2 H100 3 DAC-conversions 4 ADC-surveys 5

Surveys

Optics

Compilers

Simulation/benchmarking

Quantization

References

  1. Vaswani, A. et al. 2023. Attention Is All You Need. arXiv. 

  2. Wolf, T. et al. 2020. Transformers: State-of-the-Art Natural Language Processing. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (Online, Oct. 2020), 38–45. 

  3. NVIDIA H100 Tensor Core GPU Architecture Overview: https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper. Accessed: 2024-07-30. 

  4. Caragiulo, P. 2024. pietro-caragiulo/survey-DAC. 

  5. Murmann, B. 2024. bmurmann/ADC-survey. 

  6. Miao, X. et al. Towards Efficient Generative Large Language Model Serving: A Survey from Algorithms to Systems. J. ACM. 37, 4. 

  7. Li, M. et al. 2021. The Deep Learning Compiler: A Comprehensive Survey. IEEE Transactions on Parallel and Distributed Systems. 32, 3 (Mar. 2021), 708–727. DOI:https://doi.org/10.1109/TPDS.2020.3030548. 

  8. Chavan, A. et al. 2024. Faster and Lighter LLMs: A Survey on Current Challenges and Way Forward. Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence (Jeju, South Korea, Aug. 2024), 7980–7988. 

  9. Li, Y. 2024. Accelerating Large Scale Generative AI: A Comprehensive Study. Northeastern University. 

  10. Peccerillo, B. et al. 2022. A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives. Journal of Systems Architecture. 129, (Aug. 2022), 102561. DOI:https://doi.org/10.1016/j.sysarc.2022.102561. 

  11. McMahon, P.L. 2023. The physics of optical computing. Nature Reviews Physics. 5, 12 (Dec. 2023), 717–734. DOI:https://doi.org/10.1038/s42254-023-00645-5. 

  12. The Future of Deep Learning Is Photonic - IEEE Spectrum: https://spectrum.ieee.org/the-future-of-deep-learning-is-photonic. Accessed: 2024-01-14. 

  13. Bacvanski, M.G. et al. 2024. QAMNet: Fast and Efficient Optical QAM Neural Networks. arXiv. 

  14. Makarenko, M. et al. 2023. Photonic optical accelerators: The future engine for the era of modern AI? APL Photonics. 8, 11 (Nov. 2023), 110902. DOI:https://doi.org/10.1063/5.0174044. 

  15. Zhou, H. et al. 2022. Photonic matrix multiplication lights up photonic accelerator and beyond. Light: Science & Applications. 11, 1 (Feb. 2022), 30. DOI:https://doi.org/10.1038/s41377-022-00717-8. 

  16. Fu, T. et al. 2023. Photonic machine learning with on-chip diffractive optics. Nature Communications. 14, 1 (Jan. 2023), 70. DOI:https://doi.org/10.1038/s41467-022-35772-7. 

  17. Zhong, Z. et al. 2023. Lightning: A Reconfigurable Photonic-Electronic SmartNIC for Fast and Energy-Efficient Inference. Proceedings of the ACM SIGCOMM 2023 Conference (New York NY USA, Sep. 2023), 452–472. 

  18. Zhou, Y. et al. 2024. Vortex: Efficient Sample-Free Dynamic Tensor Program Optimization via Hardware-aware Strategy Space Hierarchization. arXiv. 

  19. Tillet, P. et al. 2019. Triton: an intermediate language and compiler for tiled neural network computations. Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages (Phoenix AZ USA, Jun. 2019), 10–19. 

  20. Feng, S. et al. 2022. TensorIR: An Abstraction for Automatic Tensorized Program Optimization. arXiv. 

  21. Rawat, P. et al. 2015. SDSLc: a multi-target domain-specific compiler for stencil computations. Proceedings of the 5th International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing (Austin Texas, Nov. 2015), 1–10. 

  22. Zhu, H. Roller: Fast and Efficient Tensor Compilation for Deep Learning. 

  23. Ansel, J. et al. 2024. PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation. Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (La Jolla CA USA, Apr. 2024), 929–947. 

  24. Lima, T.F. de et al. 2020. Primer on silicon neuromorphic photonic processors: architecture and compiler. Nanophotonics. 9, 13 (Oct. 2020), 4055–4073. DOI:https://doi.org/10.1515/nanoph-2020-0172. 

  25. Yu, F. et al. 2024. Optimizing Dynamic-Shape Neural Networks on Accelerators via On-the-Fly Micro-Kernel Polymerization. Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (La Jolla CA USA, Apr. 2024), 797–812. 

  26. Zhang, H. et al. 2024. OnePerc: A Randomness-aware Compiler for Photonic Quantum Computing. Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3 (La Jolla CA USA, Apr. 2024), 738–754. 

  27. Li, J. et al. 2023. oneDNN Graph Compiler: A Hybrid Approach for High-Performance Deep Learning Compilation. arXiv. 

  28. Guo, Z. et al. 2022. Multi-Level Encoding and Decoding in a Scalable Photonic Tensor Processor With a Photonic General Matrix Multiply (GeMM) Compiler. IEEE Journal of Selected Topics in Quantum Electronics. 28, 6: High Density Integr. Multipurpose Photon. Circ. (Nov. 2022), 1–14. DOI:https://doi.org/10.1109/JSTQE.2022.3196884. 

  29. Zhuang, D. and Xia, H. MonoNN: Enabling a New Monolithic Optimization Space for Neural Network Inference Tasks on Modern GPU-Centric Architectures. 

  30. Rotem, N. et al. 2019. Glow: Graph Lowering Compiler Techniques for Neural Networks. arXiv. 

  31. Genc, H. et al. 2021. Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration. 2021 58th ACM/IEEE Design Automation Conference (DAC) (Dec. 2021), 769–774. 

  32. Yan, R. et al. 2024. FlashFlex: Accommodating Large Language Model Training over Heterogeneous Environment. arXiv. 

  33. Ikarashi, Y. et al. 2022. Exocompilation for productive programming of hardware accelerators. Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (San Diego CA USA, Jun. 2022), 703–718. 

  34. Li, Z. et al. 2023. AlpaServe: Statistical Multiplexing with Model Parallelism for Deep Learning Serving. arXiv. 

  35. Gökçay, E. 2022. A New Multi-Target Compiler Architecture for Edge-Devices and Cloud Management. Gazi University Journal of Science. 35, 2 (Jun. 2022), 464–483. DOI:https://doi.org/10.35378/gujs.803726. 

  36. Cheng, K. et al. 2024. Slice-Level Scheduling for High Throughput and Load Balanced LLM Serving. arXiv. 

  37. Jain, K. et al. 2024. Intelligent Router for LLM Workloads: Improving Performance Through Workload-Aware Scheduling. arXiv. 

  38. Narayanan, D. et al. 2021. Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM. arXiv. 

  39. Zheng, L. et al. Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. 

  40. Zhai, Y. et al. 2023. ByteTransformer: A High-Performance Transformer Boosted for Variable-Length Inputs. arXiv. 

  41. Zhu, K. et al. 2021. DISC: A Dynamic Shape Compiler for Machine Learning Workloads. arXiv. 

  42. Collins, A. and Grover, V. 2022. Axon: A Language for Dynamic Shapes in Deep Learning Graphs. arXiv. 

  43. Tan, X. et al. 2024. Arlo: Serving Transformer-based Language Models with Dynamic Input Lengths. Proceedings of the 53rd International Conference on Parallel Processing (Gotland Sweden, Aug. 2024), 367–376. 

  44. Chen, T. et al. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. 

  45. Roesch, J. et al. 2018. Relay: A New IR for Machine Learning Frameworks. Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages (Jun. 2018), 58–68. 

  46. Roesch, J. et al. 2019. Relay: A High-Level Compiler for Deep Learning. arXiv. 

  47. Lai, R. et al. 2023. Relax: Composable Abstractions for End-to-End Dynamic Machine Learning. arXiv. 

  48. Qu, S. et al. 2024. CIM-MLC: A Multi-level Compilation Stack for Computing-In-Memory Accelerators. Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (La Jolla CA USA, Apr. 2024), 185–200. 

  49. Agrawal, A. et al. 2024. Vidur: A Large-Scale Simulation Framework For LLM Inference. arXiv. 

  50. Lowe-Power, J. et al. 2020. The gem5 Simulator: Version 20.0+. arXiv. 

  51. Yan, T. et al. 2023. Gem5Pred: Predictive Approaches For Gem5 Simulation Time. arXiv. 

  52. Ramadas, V. et al. Simulation Support for Fast and Accurate Large-Scale GPGPU & Accelerator Workloads. 

  53. Ma, J. et al. Performance Interfaces for Hardware Accelerators. 

  54. Kim, T. et al. 2024. LLMem: Estimating GPU Memory Usage for Fine-Tuning Pre-Trained LLMs. Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence (Jeju, South Korea, Aug. 2024), 6324–6332. 

  55. Zhang, H. et al. LLMCompass: Enabling Efficient Hardware Design for Large Language Model Inference. 

  56. Williams, C. LightSpeed: A Framework to Profile and Evaluate Inference Accelerators at Scale. 

  57. Jouppi, N.P. et al. 2017. In-Datacenter Performance Analysis of a Tensor Processing Unit. Proceedings of the 44th Annual International Symposium on Computer Architecture (Toronto ON Canada, Jun. 2017), 1–12. 

  58. Reidy, B. et al. Efficient Deployment of Transformer Models on Edge TPU Accelerators: A Real System Evaluation. 

  59. Su, Q. et al. 2024. BOOM: Use your Desktop to Accurately Predict the Performance of Large Deep Neural Networks. Proceedings of the 2024 International Conference on Parallel Architectures and Compilation Techniques (New York, NY, USA, Oct. 2024), 284–296. 

  60. Åleskog, C. et al. 2024. A Comparative Study on Simulation Frameworks for AI Accelerator Evaluation. 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (May 2024), 321–328. 

  61. Kaufman, S.J. et al. Learned TPU Cost Model for XLA Tensor Programs. 

  62. Kim, H. et al. 2024. Exploiting Intel Advanced Matrix Extensions (AMX) for Large Language Model Inference. IEEE Computer Architecture Letters. 23, 1 (Jan. 2024), 117–120. DOI:https://doi.org/10.1109/LCA.2024.3397747. 

  63. Yao, Z. et al. ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers. 

  64. Yao, Z. et al. 2023. ZeroQuant-HERO: Hardware-Enhanced Robust Optimized Post-Training Quantization Framework for W8A8 Transformers. arXiv. 

  65. Xiao, G. et al. 2024. SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models. arXiv. 

  66. Zafrir, O. et al. 2019. Q8BERT: Quantized 8Bit BERT. 2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing - NeurIPS Edition (EMC2-NIPS) (Vancouver, BC, Canada, Dec. 2019), 36–39. 

  67. Dettmers, T. et al. 2022. LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. arXiv. 

  68. Park, Y. et al. 2024. Inference Optimization of Foundation Models on AI Accelerators. arXiv. 

  69. Yu, J. et al. 2024. 8-bit Transformer Inference and Fine-tuning for Edge Accelerators. Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3 (New York, NY, USA, Apr. 2024), 5–21.